Ensemble learning 又稱集成學習,指的是以一個系統化的方式將好幾個監督式學習的模型結合在一起,目的是希望結合眾多的模型產生一個更強大的模型。在許多科學競賽中Ensemble learning在實務上是非常有效的提升預測準確率。依照Ensemble的處理方式的不同,我們可以將它分為三類。第一類為Bagging,第二類為Boosting,第三類為Stacking。
本系列教學簡報 PDF & Code 都可以從我的 GitHub 取得!
文章同時發表於: https://andy6804tw.github.io/crazyai-ml/13.整體學習
如果你對機器學習和人工智慧(AI)技術感興趣,歡迎參考我的線上免費電子書《經典機器學習》。這本書涵蓋了許多實用的機器學習方法和技術,適合任何對這個領域有興趣的讀者。點擊下方連結即可獲取最新內容,讓我們一起深入了解AI的世界!
👉 全民瘋AI系列 [經典機器學習] 線上免費電子書
👉 其它全民瘋AI系列 這是一個入口,匯集了許多不同主題的AI免費電子書